3.106 \(\int \sqrt{x} \sqrt{a x+b x^3+c x^5} \, dx\)

Optimal. Leaf size=129 \[ \frac{\left (b+2 c x^2\right ) \sqrt{a x+b x^3+c x^5}}{8 c \sqrt{x}}-\frac{\sqrt{x} \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{16 c^{3/2} \sqrt{a x+b x^3+c x^5}} \]

[Out]

((b + 2*c*x^2)*Sqrt[a*x + b*x^3 + c*x^5])/(8*c*Sqrt[x]) - ((b^2 - 4*a*c)*Sqrt[x]*Sqrt[a + b*x^2 + c*x^4]*ArcTa
nh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(16*c^(3/2)*Sqrt[a*x + b*x^3 + c*x^5])

________________________________________________________________________________________

Rubi [A]  time = 0.0933199, antiderivative size = 129, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {1918, 1914, 1107, 621, 206} \[ \frac{\left (b+2 c x^2\right ) \sqrt{a x+b x^3+c x^5}}{8 c \sqrt{x}}-\frac{\sqrt{x} \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{16 c^{3/2} \sqrt{a x+b x^3+c x^5}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]*Sqrt[a*x + b*x^3 + c*x^5],x]

[Out]

((b + 2*c*x^2)*Sqrt[a*x + b*x^3 + c*x^5])/(8*c*Sqrt[x]) - ((b^2 - 4*a*c)*Sqrt[x]*Sqrt[a + b*x^2 + c*x^4]*ArcTa
nh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(16*c^(3/2)*Sqrt[a*x + b*x^3 + c*x^5])

Rule 1918

Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(x^(m - n + q
+ 1)*(b + 2*c*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^p)/(2*c*(n - q)*(2*p + 1)), x] - Dist[(p*(b^2 - 4*a*c
))/(2*c*(2*p + 1)), Int[x^(m + q)*(a*x^q + b*x^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && Eq
Q[r, 2*n - q] && PosQ[n - q] &&  !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && RationalQ[m
, q] && EqQ[m + p*q + 1, n - q]

Rule 1914

Int[(x_)^(m_.)/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Dist[(x^(q/2)*Sqrt[a
 + b*x^(n - q) + c*x^(2*(n - q))])/Sqrt[a*x^q + b*x^n + c*x^(2*n - q)], Int[x^(m - q/2)/Sqrt[a + b*x^(n - q) +
 c*x^(2*(n - q))], x], x] /; FreeQ[{a, b, c, m, n, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && ((EqQ[m, 1] &&
EqQ[n, 3] && EqQ[q, 2]) || ((EqQ[m + 1/2] || EqQ[m, 3/2] || EqQ[m, 1/2] || EqQ[m, 5/2]) && EqQ[n, 3] && EqQ[q,
 1]))

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{x} \sqrt{a x+b x^3+c x^5} \, dx &=\frac{\left (b+2 c x^2\right ) \sqrt{a x+b x^3+c x^5}}{8 c \sqrt{x}}-\frac{\left (b^2-4 a c\right ) \int \frac{x^{3/2}}{\sqrt{a x+b x^3+c x^5}} \, dx}{8 c}\\ &=\frac{\left (b+2 c x^2\right ) \sqrt{a x+b x^3+c x^5}}{8 c \sqrt{x}}-\frac{\left (\left (b^2-4 a c\right ) \sqrt{x} \sqrt{a+b x^2+c x^4}\right ) \int \frac{x}{\sqrt{a+b x^2+c x^4}} \, dx}{8 c \sqrt{a x+b x^3+c x^5}}\\ &=\frac{\left (b+2 c x^2\right ) \sqrt{a x+b x^3+c x^5}}{8 c \sqrt{x}}-\frac{\left (\left (b^2-4 a c\right ) \sqrt{x} \sqrt{a+b x^2+c x^4}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{16 c \sqrt{a x+b x^3+c x^5}}\\ &=\frac{\left (b+2 c x^2\right ) \sqrt{a x+b x^3+c x^5}}{8 c \sqrt{x}}-\frac{\left (\left (b^2-4 a c\right ) \sqrt{x} \sqrt{a+b x^2+c x^4}\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{8 c \sqrt{a x+b x^3+c x^5}}\\ &=\frac{\left (b+2 c x^2\right ) \sqrt{a x+b x^3+c x^5}}{8 c \sqrt{x}}-\frac{\left (b^2-4 a c\right ) \sqrt{x} \sqrt{a+b x^2+c x^4} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{16 c^{3/2} \sqrt{a x+b x^3+c x^5}}\\ \end{align*}

Mathematica [A]  time = 0.0775967, size = 126, normalized size = 0.98 \[ \frac{\sqrt{x \left (a+b x^2+c x^4\right )} \left (\frac{\left (b+2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{4 c}-\frac{\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{8 c^{3/2}}\right )}{2 \sqrt{x} \sqrt{a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]*Sqrt[a*x + b*x^3 + c*x^5],x]

[Out]

(Sqrt[x*(a + b*x^2 + c*x^4)]*(((b + 2*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(4*c) - ((b^2 - 4*a*c)*ArcTanh[(b + 2*c*
x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(8*c^(3/2))))/(2*Sqrt[x]*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 157, normalized size = 1.2 \begin{align*}{\frac{1}{16}\sqrt{x \left ( c{x}^{4}+b{x}^{2}+a \right ) } \left ( 4\,{x}^{2}{c}^{3/2}\sqrt{c{x}^{4}+b{x}^{2}+a}+4\,\ln \left ( 1/2\,{\frac{2\,c{x}^{2}+2\,\sqrt{c{x}^{4}+b{x}^{2}+a}\sqrt{c}+b}{\sqrt{c}}} \right ) ac-\ln \left ({\frac{1}{2} \left ( 2\,c{x}^{2}+2\,\sqrt{c{x}^{4}+b{x}^{2}+a}\sqrt{c}+b \right ){\frac{1}{\sqrt{c}}}} \right ){b}^{2}+2\,b\sqrt{c{x}^{4}+b{x}^{2}+a}\sqrt{c} \right ){c}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)*(c*x^5+b*x^3+a*x)^(1/2),x)

[Out]

1/16*(x*(c*x^4+b*x^2+a))^(1/2)/c^(3/2)*(4*x^2*c^(3/2)*(c*x^4+b*x^2+a)^(1/2)+4*ln(1/2*(2*c*x^2+2*(c*x^4+b*x^2+a
)^(1/2)*c^(1/2)+b)/c^(1/2))*a*c-ln(1/2*(2*c*x^2+2*(c*x^4+b*x^2+a)^(1/2)*c^(1/2)+b)/c^(1/2))*b^2+2*b*(c*x^4+b*x
^2+a)^(1/2)*c^(1/2))/x^(1/2)/(c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{5} + b x^{3} + a x} \sqrt{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*(c*x^5+b*x^3+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^5 + b*x^3 + a*x)*sqrt(x), x)

________________________________________________________________________________________

Fricas [A]  time = 1.39673, size = 547, normalized size = 4.24 \begin{align*} \left [-\frac{{\left (b^{2} - 4 \, a c\right )} \sqrt{c} x \log \left (-\frac{8 \, c^{2} x^{5} + 8 \, b c x^{3} + 4 \, \sqrt{c x^{5} + b x^{3} + a x}{\left (2 \, c x^{2} + b\right )} \sqrt{c} \sqrt{x} +{\left (b^{2} + 4 \, a c\right )} x}{x}\right ) - 4 \, \sqrt{c x^{5} + b x^{3} + a x}{\left (2 \, c^{2} x^{2} + b c\right )} \sqrt{x}}{32 \, c^{2} x}, \frac{{\left (b^{2} - 4 \, a c\right )} \sqrt{-c} x \arctan \left (\frac{\sqrt{c x^{5} + b x^{3} + a x}{\left (2 \, c x^{2} + b\right )} \sqrt{-c} \sqrt{x}}{2 \,{\left (c^{2} x^{5} + b c x^{3} + a c x\right )}}\right ) + 2 \, \sqrt{c x^{5} + b x^{3} + a x}{\left (2 \, c^{2} x^{2} + b c\right )} \sqrt{x}}{16 \, c^{2} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*(c*x^5+b*x^3+a*x)^(1/2),x, algorithm="fricas")

[Out]

[-1/32*((b^2 - 4*a*c)*sqrt(c)*x*log(-(8*c^2*x^5 + 8*b*c*x^3 + 4*sqrt(c*x^5 + b*x^3 + a*x)*(2*c*x^2 + b)*sqrt(c
)*sqrt(x) + (b^2 + 4*a*c)*x)/x) - 4*sqrt(c*x^5 + b*x^3 + a*x)*(2*c^2*x^2 + b*c)*sqrt(x))/(c^2*x), 1/16*((b^2 -
 4*a*c)*sqrt(-c)*x*arctan(1/2*sqrt(c*x^5 + b*x^3 + a*x)*(2*c*x^2 + b)*sqrt(-c)*sqrt(x)/(c^2*x^5 + b*c*x^3 + a*
c*x)) + 2*sqrt(c*x^5 + b*x^3 + a*x)*(2*c^2*x^2 + b*c)*sqrt(x))/(c^2*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x} \sqrt{x \left (a + b x^{2} + c x^{4}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)*(c*x**5+b*x**3+a*x)**(1/2),x)

[Out]

Integral(sqrt(x)*sqrt(x*(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [A]  time = 1.19448, size = 171, normalized size = 1.33 \begin{align*} \frac{1}{8} \, \sqrt{c x^{4} + b x^{2} + a}{\left (2 \, x^{2} + \frac{b}{c}\right )} + \frac{{\left (b^{2} - 4 \, a c\right )} \log \left ({\left | -2 \,{\left (\sqrt{c} x^{2} - \sqrt{c x^{4} + b x^{2} + a}\right )} \sqrt{c} - b \right |}\right )}{16 \, c^{\frac{3}{2}}} - \frac{b^{2} \log \left ({\left | -b + 2 \, \sqrt{a} \sqrt{c} \right |}\right ) - 4 \, a c \log \left ({\left | -b + 2 \, \sqrt{a} \sqrt{c} \right |}\right ) + 2 \, \sqrt{a} b \sqrt{c}}{16 \, c^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*(c*x^5+b*x^3+a*x)^(1/2),x, algorithm="giac")

[Out]

1/8*sqrt(c*x^4 + b*x^2 + a)*(2*x^2 + b/c) + 1/16*(b^2 - 4*a*c)*log(abs(-2*(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 +
a))*sqrt(c) - b))/c^(3/2) - 1/16*(b^2*log(abs(-b + 2*sqrt(a)*sqrt(c))) - 4*a*c*log(abs(-b + 2*sqrt(a)*sqrt(c))
) + 2*sqrt(a)*b*sqrt(c))/c^(3/2)